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ABSTRACT  

This paper presents an object classification method for vision and light detection and 

ranging fusion of autonomous vehicles in the environment. This method is based on 

convolutional neural network (CNN) and image upsampling theory. By creating a 

point cloud of LIDAR data upsampling and converting into pixel-level depth 

information, depth information is connected with Red Green Blue (RGB) data and fed 

into a deep CNN. The proposed method can obtain informative feature representation 

for object classification in autonomous vehicle environment using the integrated 

vision and LIDAR data. This method is also adopted to guarantee both object 

classification accuracy and minimal loss. Experimental results are presented and show 

the effectiveness and efficiency of object classification strategies. 

 

I.INTRODUCTION 

In recent years, the development of 

autonomous vehicles has gained 

significant traction, promising 

revolutionary advancements in 

transportation and mobility. Central to 

the functionality of autonomous vehicles 

is their ability to perceive and 

understand the surrounding environment  

 

accurately. Object classification,  

particularly in dynamic and complex 

environments, poses a critical challenge 

for autonomous vehicle systems. To 

address this challenge, this project 

focuses on leveraging the fusion of 

vision and Light Detection and Ranging  
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(LiDAR) data using convolutional 

neural networks (CNNs) for robust and 

accurate object classification. The 

project aims to develop a sophisticated 

approach that integrates vision and 

LiDAR data seamlessly to enhance 

object classification capabilities in 

autonomous vehicle environments. By 

combining the rich spatial information 

provided by LiDAR with the detailed 

visual data captured by cameras, the 

proposed method seeks to achieve 

superior performance in identifying and 

classifying objects encountered on the 

road. 

This introduction sets the stage for 

further exploration into the 

methodologies, techniques, and 

innovations employed in the project to 

advance the state-of-the-art in object 

classification for autonomous vehicles. 

Through the integration of CNN-based 

fusion techniques with vision and 

LiDAR data, the project aims to 

contribute to the development of safer, 

more reliable, and more intelligent 

autonomous vehicle systems. 

II.EXISTING SYSTEM  

In the past decades, as one of the most 

fascinating technology trends in 

automotive industry, autonomous 

vehicles have received increasingly 

significant attention due to their 

significant potential in enhancing 

vehicle safety and performance, traffic 

efficiency[1], engery saving[2]. 

Research topics over automotive 

industry have already received 

substantial attentions from both 

academia and industry; some notable 

programs include Dickmanns and 

VaMP[3], ARGO project, EUREKA 

Prometheus project[4], DARPA Grand 

Challenge[5], Google’s autonomous 

vehicle[6], the annual ‘Intelligent 

Vehicle Future Challenge’ (IVFC) 

organized by National Natural Science 

Foundation of China (NSFC) since 

2009[7]. Hundreds of teams from all 

over the world participate to compete 

and demonstrate technological 

achievements on autonomous vehicles, 

and to maximize car-following fuel 

economy and fulfill requirements of 

intervehicle safety. Especially, Hu et al. 

proposed an optimal look-ahead control 

method that is based on a model 

predictive fuel-optimal controller, which 

uses state trajectories of the leading 

vehicle from V2V/V2I communication 

[2]. Autonomous vehicles should be 
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instantaneous, accurate, stable, and 

efficient in computations to produce safe 

and acceptable traveling trajectories in 

numerous urban to suburb scenarios and 

from high-density traffic flow to high-

speed highways. In real-world traffic, 

various uncertainties and complexities 

surround road and weather conditions, 

whereas a dynamic interaction exists 

between objects and obstacles; and tires 

and driving terrains. An autonomous 

vehicle must rapidly and accurately 

detect, recognize, and classify and track 

dynamic objects with complex 

backgrounds and posing technical 

challenges. 

III.PROPOSED SYSTEM : 

summarizes the pipeline used this work. 

We first capture the sparse depth map by 

rotating Velodyne® laser-point cloud 

data from the KITTI database to the 

RGB image plane using the calibration 

matrix[25]. Then, we upsample the 

sparse depth map to high-resolution 

depth image. We extract four objects 

(pedestrian, cyclist, car, and truck) from 

each image by considering the ground 

truth from KITTI[19]. We build three 

image datasets according to these 

objects. One database is for the pure 

RGB image of the four kinds of object, 

one for the gray-scale image with gray 

level corresponding to actual distance 

information from LIDAR point clouds, 

and the third one is a RGB-LIDAR 

image dataset consisting of the former 

two information. Each data set 

comprises 6843 labeled objects. Finally, 

we present a structure based on CNN to 

train a classifier for detecting the four 

kinds of objects on the road. These 

classification results are provided to the 

driving cognitive module for vehicle 

decision-making and control[26]. 

IV.LITERATURE REVIEW  

The fusion of vision and LiDAR data for 

object classification in autonomous 

vehicles has been a subject of extensive 

research in recent years. Various studies 

have explored different fusion 

techniques and methodologies to 

improve object detection and 

classification accuracy. For example, 

Zhang et al. (2019) investigated the 

integration of deep learning models with 

LiDAR point cloud data, demonstrating 

significant improvements in object 

recognition performance. Similarly, 

Wang et al. (2020) proposed a CNN-

based fusion approach that combines 
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LiDAR depth information with camera 

images to achieve robust object 

detection in challenging environments. 

These studies highlight the importance 

of leveraging both vision and LiDAR 

modalities to enhance object 

classification capabilities in autonomous 

vehicle systems. 

Several research efforts have focused on 

developing CNN-based models 

specifically tailored for object 

classification tasks in autonomous 

vehicle environments. For instance, Li et 

al. (2018) proposed a CNN architecture 

that integrates multi-modal sensor data, 

including vision and LiDAR inputs, for 

accurate object recognition. Their study 

demonstrated the effectiveness of the 

CNN model in achieving high 

classification accuracy across various 

object categories. Additionally, Sun et 

al. (2021) explored the use of attention 

mechanisms in CNNs to improve the 

fusion of vision and LiDAR data for 

object classification. Their findings 

suggest that attention-based CNN 

architectures can effectively leverage the 

complementary information provided by 

different sensor modalities, leading to 

improved object detection performance 

in autonomous vehicles. These studies 

underscore the potential of CNN-based 

fusion techniques for enhancing object 

classification capabilities and advancing 

the development of autonomous vehicle 

systems. 

V.ALGORITHMS   

➢ Input Layer: The CNN takes an 

input image, which is represented as 

a grid of pixel values. Each pixel 

value corresponds to the intensity or 

color of a specific location in the 

image. 

➢ Convolutional Layers: The input 

image is passed through a series of 

convolutional layers. Each 

convolutional layer consists of a set 

of learnable filters (also known as 

kernels) that slide over the input 

image to perform feature extraction. 

Each filter detects specific patterns 

or features, such as edges, textures, 

or shapes, within the image. The 

convolution operation involves 

element-wise multiplication of the 

filter weights with the 

corresponding pixel values in the 

input image, followed by 

summation to produce a feature 

map. 
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➢ Activation Function: After 

convolution, an activation function 

(such as ReLU) is applied element-

wise to the feature maps to 

introduce non-linearity into the 

network and enable complex 

mappings between input and output. 

➢ Pooling Layers: Pooling layers are 

used to downsample the feature 

maps obtained from the 

convolutional layers, reducing the 

spatial dimensions (width and 

height) while retaining the most 

relevant information. Common 

pooling operations include max 

pooling and average pooling, which 

take the maximum or average value 

within a local neighborhood, 

respectively. 

➢ Fully Connected Layers: The 

output of the convolutional and 

pooling layers is flattened into a 

one-dimensional vector and fed into 

one or more fully connected layers. 

These layers serve as a classifier 

and learn to map the extracted 

features to the corresponding output 

classes (e.g., object categories in 

image classification tasks). Each 

neuron in the fully connected layers 

is connected to every neuron in the 

previous layer, allowing for 

complex combinations of features to 

be learned. 

➢ Output Layer: The final layer of 

the CNN is the output layer, which 

produces the predictions or 

classifications for the input image. 

Depending on the task, the output 

layer may consist of one or more 

neurons, each corresponding to a 

specific class label or category. The 

softmax function is often used to 

convert the raw output scores into 

probability values, indicating the 

likelihood of each class. 

➢ Loss Function and Optimization: 

During training, the CNN learns to 

minimize a predefined loss function, 

which measures the difference 

between the predicted output and 

the ground truth labels. 

Optimization algorithms such as 

stochastic gradient descent (SGD) 

or Adam are used to update the 

weights of the network parameters 

iteratively, reducing the loss and 

improving the model's performance. 

➢ Training and Evaluation: The 

CNN is trained on a labeled dataset 
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consisting of input images and their 

corresponding ground truth labels. 

The training process involves 

iteratively feeding batches of 

images through the network, 

computing the loss, and updating 

the weights using backpropagation. 

Once trained, the CNN is evaluated 

on a separate validation or test 

dataset to assess its performance 

and generalization ability. 
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